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In recent years there has been considerable interest in the effect of variations in activities of
xenobiotic-metabolizing enzymes on cancer incidence. This interest has accelerated with the
characterization of human enzymes, both those involved in activation and detoxication, and the
development of methods for analyzing genetic polymorphisms. However, progress in epidemiol-
ogy has been slow and the contributions of polymorphisms to risks from individual chemicals and
mixtures are often controversial. A series of studies is presented to show the complexities
encountered with a single chemical, aflatoxin B1 (AFB,). AFB1 is oxidized by human cytochrome
P450 enzymes to several products. Only one of these, the 8,9-exo-epoxide, appears to be muta-
genic and the others are detoxication products. P450 3A4, which can both activate and detoxicate
AFB1, is found in the liver and the small intestine. In the small intestine, the first contact after oral
exposure, epoxidation would not lead to liver cancer. The (nonenzymatic) half-life of the epoxide
has been determined to be approximately 1 sec at 23°C and neutral pH. Although the half-life is
short, AFB1-8,9-exo-epoxide does react with DNA and glutathione S-transferase. Levels of these
conjugates have been measured and combined with the rate of hydrolysis in a kinetic model to
predict constants for binding of the epoxide with DNA and glutathione S-transferase. A role for
epoxide hydrolase in alteration of AFB1 hepatocarcinogenesis has been proposed, although experi-
mental evidence is lacking. Some inhibition of microsome-generated genotoxicity was observed
with rat epoxide hydrolase; further information on the extent of contribution of this enzyme to
AFB, metabolism is not yet available. Environ Health Perspect 1 04(Suppl 3):557-562 (1996)
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Introduction
The role of enzymatic transformation in variation of levels of individual enzymes
the activation and detoxication of chemi- that can occur (2). With experimental
cal carcinogens has been recognized for animal systems, there is considerable evi-
half a century (1). Studies on these dence that alterations in levels of some of
enzymes have shown their multiplicity in these enzymes can have dramatic effects in
many cases, as well as the large extent of influencing the incidence of cancer from
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chemical carcinogens, both in the classical
initiation and promotion phases (3-7).
This background in experimental models
has led to hypotheses that variations in
the activities of individual enzymes
involved in xenobiotic transformation
influence cancer incidence in humans
(7,8). In the late 1980s it became possible
to assign roles in the activation of many
chemical carcinogens to individual P450
enzymes on the basis of in vitro results
(8,9) (Table 1). The same approaches
have been used with other enzymes such
as GST and N-acetyltransferase. In some
cases, the dominance of a particular
enzyme (especially cytochrome P450) in
the metabolism of a drug has made it pos-
sible to make in vivo evaluations of the
contributions to the human metabolism
of a carcinogen, especially if low levels of
the carcinogen can be administered to
humans (7,8,1 1).

The above information has led to
studies involving what is often referred to
as molecular epidemiology, particularly in
the effort to associate cancer risks with
levels of enzymes or with genetic poly-
morphisms in the enzymes. The difficulty
in the approach may be exemplified by
the results of efforts to relate levels of
P450 2D6 with tobacco-induced lung
cancer, where equivocal results have been
obtained in different laboratories over the
course of a decade (12-15). Part of the
difficulty in this situation may be a result
of the myriad of potential carcinogens
found in tobacco smoke and the lack of
P450 2D6 to dominate in the activation
of any of these (16-18).

Aflatoxin B1 (AFBI) is generally con-
sidered to play a major role in human
liver cancer in some parts of the world
(19,20), and much is now known about
its mechanism of genotoxicity, which
appears to be the result of the formation
of a single initial DNA adduct (at the
guanyl N7 atom) (21,22). We have con-
sidered some of the complexities of the
metabolism of AFB1 and the relevance to
efforts to implicate individual enzyme
levels as factors in risk.

Methods
Chenicals

AFB1 was purchased from Sigma Chemical
Co. (St. Louis, MO) and was further
purified by thin-layer chromatography
under dim light (silica gel G) before use in
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Table 1. Major carcinogenic substrates for human
P450 enzymes.

P450 Substrate

lAl Polycyclic hydrocarbons
1A2 Aryl amines

Heterocyclic amines
2A6 Nitrosamines
2E1 Nitrosamines

Benzene
Vinyl monomers
Halogenated hydrocarbons

3A4 Aflatoxins
Polycyclic hydrocarbon dihydrodiols
Pyrrolizidine alkaloids
Some aryl amines
Mercapturic acids

Data from Guengerich and Shimada (8,10).

the genotoxicity experiments. AFBI-8,9-
epoxide was synthesized with the use of
dimethyldioxirane (23) by T. M. Harris,
and the exo isomer was crystallized from a
(CH3)2CO:CHCl3 mixture (24). 8-(S-
glutathionyl), 9-hydroxy AFB1 (GS-AFBI)
(25) was also a gift from Harris' labora-
tory. AFB,-8,9-dihydrodiol was prepared
by the addition of aqueous HCl to
AFB,-8,9-epoxide.
Enzymes
Recombinant human P450s 1A2 (26) and
3A4 (27) were produced in Escherichia coli
and purified as described. Rabbit liver
NADPH-P450 reductase (28) and cyto-
chrome b5 (29) were isolated as described.
Recombinant (rat) glutathione S-trans-
ferase (GST) 3-3 was a gift from R. N.
Armstrong. Rat and human liver epoxide
hydrolases (EHs) were purified using
modifications of procedures published
elsewhere (30).

Assays
GS-AFB1 (products of exo and endo epox-
ides) and AFB,-8,9-dihydrodiol were
separated by high-performance liquid chro-
matography (HPLC) and quantified (A360)
as described elsewhere (25,31). Genotoxi-
city assays involved measurement of the
umu (SOS) response in Salmonella typhi-
murium TA1535 harboring the plasmid
pSK1001 using general procedures described
elsewhere (32). Experiments involving
kinetics of AFBr-8,9-exo-epoxide hydrolysis
were done using an Applied Photophysics
SX-17-MV system (Leatherbarrow, U.K.)
equipped with fluorescence and UV-diode
array detectors and software for analysis of
results. Kinetic simulations were done
with the KINSIM (33) software run on a

Macintosh PowerMac computer (Apple
Computer, Inc., Cupertino, CA) equipped
with a Software FPU coprocessing simulator.

Results
Oxidation ofAFB1 by P450 Enzymes
P450 3A4 has been shown to play a major
role in the activation of AFBI due to its
intrinsic activity towards this substrate and
the high level of this enzyme present in
human liver (9,31,34-37) (Table 2).
P450 1A2 and some other human P450s
can also contribute, but they play a lesser
role, even at relatively low AFB, concentra-
tions (31,35,36,38,39). P450 3A4 forms
only the genotoxic AFBI-8,9-exo-epoxide;
P450 1A2 forms both the exo and the
nongenotoxic endo isomers (Figure 1)(31).

P450s can also detoxicate AFBI (Figure
1). P450 3A4 forms AFQi, the 3a-hydrox-
ylation product, which does not appear
to be a good substrate for epoxidation
(37). P450 1A2 forms AFMI (by 9a
hydroxylation), which also seems to be a
detoxication product (31,37). In animal
studies, the induction of P450 1A2 and
production of AFMI have been reported
to account for the lower levels of AFB1-
induced hepatocellular cancer after admin-
istration of polycyclic hydrocarbons
(40,41). Which of the human P450s form
aflatoxin PI is not known.

Table 2. Rates of oxidation of AFB, by recombinant
human P450s.

Product formed, nmol/min/nmol P450
AFB1-8,9-epoxide

P450 AFQ1 AFM1 exo endo

lAl <0.05 0.14 <0.05 <0.05
1A2 0.2 1.5 0.15 0.15
3A4 6.8 < 0.05 1.35 < 0.05

Data from Ueng et al. (31).

Flavonoids can modulate the metabo-
lism of AFBI, as first reported by Conney's
laboratory (42,43). a-Naphthoflavone
inhibits all activities of P450 1A2 (31); it
also inhibits AFB, 3a-hydroxylation (to
form AFQ1) by P450 3A4 but stimulates
8,9-epoxidation (31,37). The influence on
the kinetic profiles is postulated to reflect
an allosteric mechanism (44).

Conjugation ofAFB1-8,9-epoxides
with Glutathione
Several lines of evidence suggest that the
extent of glutathione (GSH) conjugation
of AFB,-8,9-epoxide is a major factor in
influencing the risk of different experimen-
tal animal species to AFBI-induced hepato-
cellular carcinoma (Figure 2)(6,45). At
neutral pH, there is essentially no nonenzy-
matic reaction of GSH with AFB1-8,9-
epoxide (25). With crude liver cytosolic

0

0

OH

OCH3

AFM1

0

H

Hov-OC C3

AFQO

Figure 1. Oxidation of AFB1 by P450s.
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fractions, the order of (enzymatic) GST
activity is mouse > rat > human (25). The
relative extent of GSH-AFB1 conjugate
formation by some human GSTs is shown
in Table 3.

AFB1-8,9-epoxide Hydrolysis
Previous work has shown that the exo
epoxide, the major isomer formed (24,31),
is also less stable in CH3OH/H20 mix-
tures (46). Other work has suggested that
the half-life (t1/2) of the exo epoxide was
< 10 sec (47).

Preliminary studies have indicated that
the UV spectrum of AFB1-8,9-dihydrodiol
is distinct from that of the epoxide (Figure
3A). The fluorescence spectra are even
more distinct, with the dihydrodiol having
more than two orders of magnitude more
fluorescence than the epoxide. Kinetics of
hydrolysis were measured in a stopped-flow
apparatus in a pH 7.0 buffer, with 9%
(CH3)2CO present (final concentration).
The t1/2 was approximately 1 sec when
either UV or fluorescence traces were
measured (Figure 3B).

Further studies indicated that the
observed hydrolysis rate constant was
rather constant between pH 4 and pH 9
but was increased at <pH 4, with a slope of
the loglo observed versus pH having a
slope of unity.

Interaction ofAFB1-8,9-exo-epoxide
with Glutathione &Transferase 3-3
and DNA
In earlier studies the relative rates of reaction
of GSTs with AFB1-8,9-epoxides had been
estimated by quantitation of GSH-AFB1
with fixed concentrations of GSTs and
time points (Table 3) (25). To examine
the aspects of these interactions, we mea-
sured the extent of GS-AFB1 formation
after mixing varying concentrations of
AFB1-8,9-exo-epoxide and GST 3-3 in the
presence ofGSH (Figure 4).

To estimate constants for the reactions,
we set up the equations

Keq
, kA+B AB-I C

and

A ko D

where A = [AFB,-8,9-exo-epoxide]
B = [GST 3-3]
C= [GS-AFB1]

and D = [AFB1-8,9-dihydrodiol]

and utilized the KINSIM program (33)
to evaluate various values of Keq and k,
that would give match values of C and

OH

H

GSTA 0 0

GSH[ QH
O

Oj-,. H H+

0 OH H

AFB1-exo"8,oxlde

DNA

QH

Guanine(N77)

H.to

Figure 2. Reactions of AFB1 8,9-oxides.

D experimentally measured at various
concentrations of A and B (Figure 4). The
same approach was used with DNA and
previously measured values (48) and with
B= DNA and C= DNA N7-guanyl adduct.
The estimates are presented in Table 4,
along with the measured k,.

Table 3. Conjugation of AFB,-8,9-epoxides by purified
human GSTs.

GSH-AFB, conjugate formed,
nmol/mg GST proteina

GST exo-8,9-Epoxide endo-8,9-Epoxide

Al-i 0.04 <0.01
A2-2 0.02 <0.01
Mi-i 0.55 1.35
M3-3 <0.14 <0.14
Pi- <0.06 <0.06

Data from Raney et al. (25). 'AFB, (10:1 exo:endo mix-
ture) was added to a 50 pl solution of each enzyme to
give a final concentration of 55 pM AFB1-8,9-epoxide.
CH3CO2H was added to precipitate protein, and
the GSH-AFB, conjugates were analyzed by HPLC.
The results presented are means of duplicate experi-
ments (25).

A

CD

CD-0

-o

B

IN

D,

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

OH'

H+

Dihydrodiol

AFB,-rxo8,9-oxide

320 320 320 320 320 320

Wavelength, nm

0 2.0 4.0 6.0 8.0 10.0

Time, sec

Figure 3. Nonenzymatic hydrolysis of AFB,-8,9-
exo-epoxide. A, A solution of AFB1-8,9-exo-epoxide [in
dry (CH3)2C0] was mixed with 10 volumes of 50 mM
potassium phosphate buffer (pH 7.0) at 23°C in the
stopped-flow spectrophotometer and UV spectra were
recorded approximately every 20 msec with the use of
a diode array detector. B, In a similar experiment, the
increase in fluorescence (excitation 357 nm, emission
452 nm) was recorded as a function of time.
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80 Interactions ofAFBI-8,9-cco-epoxide
and Epoxide Hydrolase

-3 60 The action ofEH on AFBI-8,9-exo-epoxide
has been postulated before (49,50), but

m- I +/ definite results regarding this possibility
<( 40 - I _are not available. The rapid rate of non-I) | Xenzymatic hydrolysis (Figure 3B, Table 4)

renders direct measurement of the reaction
20 - / ) ,difficult. We could not see a definite effect

of purified rat human EH on the recovery

0- of N7-guanyl DNA adducts in experi-
0 20 40 60 80 ments where AFBI-8,9-epoxide was mixed

Rat GST 3-3, ,uM with DNA or where EHs were added to a

Figure 4. Formation of GS-AFB1 by GST 3-3. AFB-89 system containing P450 3A4 (plus all
exo-epoxide, in dry acetone, was mixed with varying accessory components needed for oxida-

amounts of GST 3-3 and 10 mM GSH in 50 p1 of 50 mM tion) and a suboptimal amount of GST.
potassium phosphate buffer (pH 7.4) at 23°C. The final However, in other experiments we have
concentration of AFB1-8,9-exo-epoxide was 4 (.), been able to increase the observed rate of
12 (*), or 24 (U) mM. After 15 sec, 20 ml of 2.0 M AFBI-8,9-exo-epoxide hydrolysis (from
aqueous CH3CO2H was added and the protein was pre- 0.64 to 0.78/sec) in the presence of 19 pM
cipitated by centrifugation at 3xl03xgfor 10 min. rat EH. This result needs to be further
Aliquots of the supernatant were analyzed for AFB- evaluated.
8,9-dihydrodiol and GS-AFB, by HPLC as described We also used another system in which a

elsewhere (25,31).
very low concentration of P450 3A4 (and
accessory components) was used to activate

Table 4. Reactions of AFB, 8,9-exo oxide with GST 3-3 aFceisar ,typhimuriu st*t
or DNA. AFBI in an S. typhimurium system in

which an umu end point was measured
ko = kH+ aH+ +ko (Figure 5). Under such conditions a very

kH =0.58/sec high ratio of EH:P450 can be achieved.
kH+= 2.0 x 103/M/sec Both and human EH could partially

B Keq k1 inhibit the genotoxicity response under
f'CIT 13 1) n nIq ..A n an /--- these conditions.661 3-3 U.U3PM U.U8/sec
DNA 0.05 pM 0.20/sec

(See text for kinetic model.)
AFB1

CD

nR- 300-

200 -

0

cn

o 1 2 3

EH, ,M

Figure 5. Effect of purified EH on genotoxicity of AFB,
activated by P450 3A4. AFB1 (20 pM) was activated in
the presence of a recombinant P450 3A4 (10 nM)-
based oxidation system (31) in the presence of an

NADPH-generating system, S. typhimurium TAl 535
containing plasmid pSK1001, and the indicated con-
centrations of purified rat (-) or human (A,) EH (the
latter two samples were prepared from human liver
samples, HL96 and HL1 05, of two different individuals).
The response to heat-inactivated rat EH is also shown
(o). The umu response was monitored by 0-galactosi-
dase response and is expressed as described by
Shimada et al. (32).

Small
intestine

Liver

Summary
Further studies are needed to evaluate the
role ofEH in the metabolism ofAFB1-8,9-
epoxide. The report of McGlynn et al.
(49) is surprising in that the EH allelic
variant was linked with higher levels of
AFBI-albumin adduct, even though the
major AFB1 protein adduct is thought to

be derived from AFBI-8,9-dihydrodiol
(51). The dihydrodiol results from the
enzymatic or nonenzymatic hydrolysis of
the epoxide. The possibility of direct reac-

tion of protein with the epoxide cannot be
ruled out at this time; however, the effect
of the allelic variation on the catalytic
activity of EH is not well established. The
report of lower activity is the result of
lower levels of expression in a transient
system, not intrinsic catalytic activity (52).

The complexity of the enzyme systems

involved in the metabolism ofAFB1 points
out the difficulties in doing molecular epi-
demiology studies, even when a single
chemical carcinogen has been identified.
The roles of at least two P450s in the acti-
vation process have been considered. There
is suggestive evidence that human GSTs in
the alpha, mu, and theta families may all
have roles in the detoxication of the epox-

ide (25,53-55). Further work is needed to

establish whether there is a role for EH.
With all of the enzymes, there is a need

Considerations:
AFB1 intake
Relative levels of enzymes
Regulation: genetics and environment (variation over time?)
Influence of inhibitors and stimulators
Locations

DNA repair
Correlation of adducts with cancer
HBV status, inflammation, and other nongenotoxic influences

Figure 6. Complications involved in the metabolism of AFB1 and relevance to hepatocellular cancer.
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to consider the stereochemistry of the
epoxide, which has been shown to be
critical in genotoxicity.
We anticipate that more careful analysis

of the kinetics of the reactions under con-
sideration here will provide insight into
competition of detoxication enzymes with
DNA (Figure 2). However, even with this
information there are considerable prob-
lems in the knowledge base underlying
efforts in molecular epidemiology (Figure
6). The P450s both activate and detoxicate

AFB1, and the effect of inducing individual
P450s is not easy to predict. Moreover,
P450 3A4 is expressed in small intestine,
the site of absorption of orally ingested
AFB1. The extent of detoxication there is
unknown. Further, even activation of
AFB1 and DNA alkylation in the small
intestine may be considered to be a detoxi-
cation process since the cells are sloughed
rapidly and cancers of the small intestine
are very rare. Other aspects regarding
enzymes of activation and detoxication

mentioned in Figure 6 have been discussed
above. Other aspects not discussed here,
but which may be involved, include
whether the N7-guanyl adduct or its ring-
opened form is more mutagenic, the role of
DNA repair, aflatoxin intake, the intraindi-
vidual variability of levels of the enzymes
under consideration during the course of
tumor initiation and development, and
hepatitis B virus status.
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